Relevant papers

The special issue is inspired by Dagstuhl seminar 22102. More information on that Dagstuhl can be found here: https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=22102. At the Dagstuhl seminar, a set of relevant research papers has been identified. The following is a repeat of text from the report of the Dagstuhl seminar:
Janssen, C.P., Baumann, M., Oulasvirta, A., Iqbal, S.T., and Heinrich, L. (2022) Computational Models of Human-Automated Vehicle Interaction (Dagstuhl Seminar 22102). Dagstuhl Reports, 12 (3), pp. 15-81. https://doi.org/10.4230/DagRep.12.3.15 .

Among the attendees we gathered an overview of papers that they thought were interesting for researchers in the field. Before the conference, we sent out a google form and asked attendees to submit papers that they thought were interesting and either written by themselves or others. The suggested papers are for example relevant domains for modeling, or examples of modeling papers. The following papers were suggested: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46] During the conference, we also crowdsourced a collection of relevant papers. The large majority of these papers contain examples of models or (conceptual) frameworks or datasets that are used for or inspired by models. These papers were suggested: [3, 13, 15, 16, 37, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]

References:

  1. Anderson, J. R., Zhang, Q., Borst, J. P., Walsh, M. M. (2016). The discovery of processing stages: Extension of Sternberg’s method. Psychological review, 123(5), 481.
  2. Bianchi Piccinini, G., Lehtonen, E., Forcolin, F., Engström, J., Albers, D., Markkula, G., Lodin, J., Sandin, J. (2020). How do drivers respond to silent automation failures? Driving simulator study and comparison of computational driver braking models. Human factors, 62(7), 1212-1229.
  3. Blum, S., Klaproth, O., Russwinkel, N. (2022). Cognitive Modeling of Anticipation: Unsuper- vised Learning and Symbolic Modeling of Pilots’ Mental Representations. Topics in Cognitive Science, 10.1111/tops.12594. Advance online publication. https://doi.org/10.1111/tops.12594
  4. Cummings, M. L., Li, S., Zhu, H. (2022). Modeling operator self-assessment in human- autonomy teaming settings. International Journal of Human-Computer Studies, 157, 102729.
  5. Damm, W., Fränzle, M., Lüdtke, A., Rieger, J. W., Trende, A., Unni, A. (2019, June). Integrating neurophysiological sensors and driver models for safe and performant automated vehicle control in mixed traffic. In 2019 IEEE Intelligent Vehicles Symposium (IV) (pp. 82-89). IEEE.
  6. Eilers, M., Fathiazar, E., Suck, S., Twumasi, D. (2019) Dynamic Bayesian networks for driver- intention recognition based on the traffic situation. In Cooperative Intelligent Transport Systems: Towards high-level automated driving, , pp. 465-495
  7. Funk Drechsler, M., Peintner, J. B., Seifert, G., Huber, W., Riener, A. (2021, September). Mixed Reality Environment for Testing Automated Vehicle and Pedestrian Interaction. In 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 229-232).
  8. van der Heiden, R. M., Kenemans, J. L., Donker, S. F., Janssen, C. P. (2021). The effect of cognitive load on auditory susceptibility during automated driving. Human factors, 0018720821998850.
  9. Janssen, C. P., Boyle, L. N., Ju, W., Riener, A., Alvarez, I. (2020). Agents, environments, scenarios: A framework for examining models and simulations of human-vehicle interaction. Transportation research interdisciplinary perspectives, 8, 100214.
  10. Janssen, C. P., Iqbal, S. T., Kun, A. L., Donker, S. F. (2019). Interrupted by my car? Implications of interruption and interleaving research for automated vehicles. International Journal of Human-Computer Studies, 130, 221-233.
  11. Jeon, M., Zhang, Y., Jeong, H., P. Janssen, C., Bao, S. (2021, September). Computational Modeling of Driving Behaviors: Challenges and Approaches. In 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 160-163).
  12. Jokinen, J. P., Kujala, T. (2021). Modelling Drivers’ Adaptation to Assistance Systems. In 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 12-19).
  13. Jokinen, J. P., Kujala, T., Oulasvirta, A. (2021). Multitasking in driving as optimal adaptation under uncertainty. Human factors, 63(8), 1324-1341.
  14. Kambhampati, S. (2020). Challenges of human-aware AI systems. AI Magazine, 41(3), 3-17. https://doi.org/10.1609/AIMAG.V41I3.5257
  15. Kanaan, D., Ayas, S., Donmez, B., Risteska, M., Chakraborty, J. (2019). Using naturalistic vehicle-based data to predict distraction and environmental demand. International Journal of Mobile Human Computer Interaction (IJMHCI), 11(3), 59-70.
  16. Klaproth, O.W., Halbrügge, M., Krol, L.R., Vernaleken, C., Zander, T.O., Russwinkel, N. (2020), A Neuroadaptive Cognitive Model for Dealing with Uncertainty in Tracing Pilots’ Cognitive State. Topics in Cognitive Science, 12(3), 1012-1029. doi:10.1111/tops.12515
  17. Ko, S., Kutchek, K., Zhang, Y., Jeon, M. (2022). Effects of non-speech auditory cues on control transition behaviors in semi-automated vehicles: Empirical study, modeling, and validation. International Journal of Human–Computer Interaction, 38(2), 185-200.
  18. Krishnan, R., Tickoo, O. (2020). Improving model calibration with accuracy versus uncertainty optimization. Advances in Neural Information Processing Systems, 33, 18237- 18248.
  19. Kuen, J., Schartmüller, C., Wintersberger, P. (2021, September). The TOR Agent: Optimizing Driver Take-Over with Reinforcement Learning. In 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 47-52).
  20. Lavin, A., Zenil, H., Paige, B., Krakauer, D., Gottschlich, J., Mattson, T., ... Pfeffer, A. (2021). Simulation Intelligence: Towards a New Generation of Scientific Methods. arXiv preprint arXiv:2112.03235.
  21. Lechner, M., Hasani, R., Amini, A., Henzinger, T. A., Rus, D., Grosu, R. (2020). Neural circuit policies enabling auditable autonomy. Nature Machine Intelligence, 2(10), 642-652.
  22. Lee, J. Y., Lee, J. D. (2019). Modeling microstructure of drivers; task switching behavior. International Journal of Human-Computer Studies, 125, 104-117.
  23. Leon, J. F. (2020, July). Robust Scene Understanding via Real-Time Approximate Bayesian Computations. In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP) (pp. 13-13). IEEE.
  24. Manstetten, D., Beruscha, F., Bieg, H. J., Kobiela, F., Korthauer, A., Krautter, W., Marberger, C. (2020, October). The Evolution of Driver Monitoring Systems: A Shortened Story on Past, Current and Future Approaches How Cars Acquire Knowledge About the Driver’s State. In 22nd International Conference on Human-Computer Interaction with Mobile Devices and Services (pp. 1-6).
  25. Markkula, G., Dogar, M. (2022). How accurate models of human behavior are needed for human-robot interaction? For automated driving?. arXiv preprint arXiv:2202.06123.
  26. Martelaro, N., Teevan, J., Iqbal, S. T. (2019, May). An exploration of speech-based productivity support in the car. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-12).
  27. Martín, J. A. Á., Gollee, H., Müller, J., Murray-Smith, R. (2021). Intermittent control as a model of mouse movements. ACM Transactions on Computer-Human Interaction (TOCHI), 28(5), 1-46.
  28. Morando, A., Gershon, P., Mehler, B., Reimer, B. (2021). A model for naturalistic glance behavior around Tesla Autopilot disengagements. Accident Analysis Prevention, 161, 106348.
  29. Oulasvirta, A. (2019). It’s time to rediscover HCI models. Interactions, 26(4), 52-56.
  30. Oulasvirta, A., Kristensson, P. O., Bi, X., Howes, A. (Eds.). (2018). Computational interaction. Oxford University Press.
  31. Pakdamanian, E., Sheng, S., Baee, S., Heo, S., Kraus, S., Feng, L. (2021, May). Deeptake: Prediction of driver takeover behavior using multimodal data. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-14).
  32. Pakdamanian, E., Sheng, S., Baee, S., Heo, S., Kraus, S., Feng, L. (2021, May). Deeptake: Prediction of driver takeover behavior using multimodal data. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-14).
  33. Petermeijer, S. M., Tinga, A., Jansen, R., de Reus, A., van Waterschoot, B. (2021, Septem- ber). What Makes a Good Team?-Towards the Assessment of Driver-Vehicle Cooperation. In 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 99-108).
  34. Rehman, U., Cao, S., MacGregor, C. (2019). Using an integrated cognitive architecture to model the effect of environmental complexity on drivers’ situation awareness. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 63, No. 1, pp. 812-816). Sage CA: Los Angeles, CA: SAGE Publications.
  35. Ringfort-Felner, R., Laschke, M., Sadeghian, S., Hassenzahl, M. (2022). Kiro: A Design Fiction to Explore Social Conversation with Voice Assistants. Proceedings of the ACM on Human-Computer Interaction, 6(GROUP), 1-21.
  36. Sadeghian, S., Hassenzahl, M., Eckoldt, K. (2020, September). An exploration of prosocial aspects of communication cues between automated vehicles and pedestrians. In 12th Inter- national Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 205-211).
  37. Scharfe, M. Russwinkel, N. (2019). Towards a Cognitive Model of the Takeover in Highly Automated Driving for the Improvement of Human Machine Interaction. In Proceedings of the 17th International Conference on Cognitive Modelling, Montreal, Canada (pp. 210-215).
  38. Suo, S., Regalado, S., Casas, S., Urtasun, R. (2021). Trafficsim: Learning to simulate realistic multi-agent behaviors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10400-10409).
  39. Teodorovicz, T., Kun, A. L., Sadun, R., Shaer, O. (2022). Multitasking while driving: A time use study of commuting knowledge workers to assess current and future uses. International Journal of Human-Computer Studies, 162, 102789.
  40. Todi, K., Bailly, G., Leiva, L., Oulasvirta, A. (2021, May). Adapting user interfaces with model-based reinforcement learning. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-13).
  41. Tonolini, F., Radford, J., Turpin, A., Faccio, D., Murray-Smith, R. (2020). Variational inference for computational imaging inverse problems. Journal of Machine Learning Research, 21(179), 1-46.
  42. Wintersberger, P., Schartmüller, C., Shadeghian-Borojeni, S., Frison, A. K., Riener, A. (2021). Evaluation of imminent take-over requests with real automation on a test track. Human factors, 00187208211051435.
  43. Wong, P. N., Brumby, D. P., Babu, H. V. R., Kobayashi, K. (2019). Voices in Self- Driving Cars Should be Assertive to More Quickly Grab a Distracted Driver’s Attention. In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 165-176).
  44. Wu, T., Martelaro, N., Stent, S., Ortiz, J., Ju, W. (2021). Learning When Agents Can Talk to Drivers Using the INAGT Dataset and Multisensor Fusion. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(3), 1-28.
  45. Yan, F., Eilers, M., Lüdtke, A., Baumann, M. (2016, June). Developing a model of driver’s uncertainty in lane change situations for trustworthy lane change decision aid systems. In 2016 IEEE Intelligent Vehicles Symposium (IV) (pp. 406-411). IEEE.
  46. Zhang, Y., Wu, C., Qiao, C., Sadek, A., Hulme, K. F. (2022). A Cognitive Computational Model of Driver Warning Response Performance in Connected Vehicle Systems. IEEE Transactions on Intelligent Transportation Systems.
  47. Abbink, D. A., Mulder, M., Boer, E. R. (2012). Haptic shared control: smoothly shifting control authority?. Cognition, Technology Work, 14(1), 19-28.
  48. Bärgman, J., Boda, C. N., Dozza, M. (2017). Counterfactual simulations applied to SHRP2 crashes: The effect of driver behavior models on safety benefit estimations of intelligent safety systems. Accident Analysis Prevention, 102, 165-180.
  49. Bianchi Piccinini, G., Lehtonen, E., Forcolin, F., Engström, J., Albers, D., Markkula, G., ... Sandin, J. (2020). How do drivers respond to silent automation failures? Driving simulator study and comparison of computational driver braking models. Human factors, 62(7), 1212-1229.
  50. Colombi, J. M., Miller, M. E., Schneider, M., McGrogan, M. J., Long, C. D. S., Plaga, J. (2012). Predictive mental workload modeling for semiautonomous system design: Implications for systems of systems. Systems Engineering, 15(4), 448-460.
  51. Gunzelmann, G., Moore Jr, L. R., Salvucci, D. D., Gluck, K. A. (2011). Sleep loss and driver performance: Quantitative predictions with zero free parameters. Cognitive Systems Research, 12(2), 154-163.
  52. He, D., Wang, Z., Khalil, E. B., Donmez, B., Qiao, G., Kumar, S. (in press). Classification of driver cognitive load: Exploring the benefits of fusing eye-tracking and physiological measures. Transportation Research Record.
  53. Janssen, C. P., Brumby, D. P. (2010). Strategic adaptation to performance objectives in a dual-task setting. Cognitive science, 34(8), 1548-1560.
  54. Janssen, C. P., Brumby, D. P., Garnett, R. (2012). Natural break points: The influence of priorities and cognitive and motor cues on dual-task interleaving. Journal of Cognitive Engineering and Decision Making, 6(1), 5-29.
  55. Janssen, C. P., Boyle, L. N., Kun, A. L., Ju, W., Chuang, L. L. (2019). A hidden markov framework to capture human–machine interaction in automated vehicles. International Journal of Human–Computer Interaction, 35(11), 947-955.
  56. Janssen, C. P., Boyle, L. N., Ju, W., Riener, A., Alvarez, I. (2020). Agents, environments, scenarios: A framework for examining models and simulations of human-vehicle interaction. Transportation research interdisciplinary perspectives, 8, 100214.
  57. Janssen, C. P., Everaert, E., Hendriksen, H. M., Mensing, G. L., Tigchelaar, L. J., Nunner, H. (2019). The influence of rewards on (sub-) optimal interleaving. PloS one, 14(3), e0214027.
  58. Janssen, C. P., Iqbal, S. T., Kun, A. L., Donker, S. F. (2019). Interrupted by my car? Implications of interruption and interleaving research for automated vehicles. International Journal of Human-Computer Studies, 130, 221-233.
  59. Johora, F. T., Müller, J. P. (2018, November). Modeling interactions of multimodal road users in shared spaces. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 3568-3574). IEEE.
  60. Kahl, S., Wiese, S., Russwinkel, N., Kopp, S. (2021). Towards autonomous artificial agents with an active self: modelling sense of control in situated action. Cognitive Systems Research, 72, 50-62. https://doi.org/10.1016/j.cogsys.2021.11.005
  61. Khosroshahi, E. B., Salvucci, D. D., Veksler, B. Z., Gunzelmann, G. (2016). Capturing the effects of moderate fatigue on driver performance. In Proceedings of the 14th International Conference on Cognitive Modeling (pp. 163-168).
  62. Lotz, A., Russwinkel, N., Wagner, T. and Wohlfarth, E. (2020). An adaptive assistance system for subjective critical driving simulation: understanding the relationship between subjective and objective complexity. In D. de Waard et al. (Eds.), Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2019 Annual Conference. Nantes, France, p. 97-108.
  63. Lotz, A., Wiese, S. Russwinkel, N. (2019). SEEV-VM: ACT-R Visual Module based on SEEV theory. In Proceedings of the 17th International Conference on Cognitive Modelling (ICCM 2019), Montreal, Canada (pp. 301-306).
  64. Markkula, G., Romano, R., Madigan, R., Fox, C. W., Giles, O. T., Merat, N. (2018). Models of human decision-making as tools for estimating and optimizing impacts of vehicle automation. Transportation research record, 2672(37), 153-163.
  65. Mole, C., Pekkanen, J., Sheppard, W., Louw, T., Romano, R., Merat, N., ... Wilkie, R. (2020). Predicting takeover response to silent automated vehicle failures. Plos one, 15(11), e0242825.
  66. Nagaraju, D., Ansah, A., Ch, N. A. N., Mills, C., Janssen, C. P., Shaer, O., Kun, A. L. (2021). How Will Drivers Take Back Control in Automated Vehicles? A Driving Simulator Test of an Interleaving Framework. In 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 20-27).
  67. Pekkanen, J., Giles, O. T., Lee, Y. M., Madigan, R., Daimon, T., Merat, N., Markkula, G. (2021). Variable-drift diffusion models of pedestrian road-crossing decisions. Computational Brain Behavior, 1-21.
  68. Salvucci, D. D. (2006). Modeling driver behavior in a cognitive architecture. Human factors, 48(2), 362-380.
  69. Salvucci, D. D., Gray, R. (2004). A two-point visual control model of steering. Perception, 33(10), 1233-1248.
  70. Salvucci, D. D., Zuber, M., Beregovaia, E., Markley, D. (2005). Distract-R: Rapid prototyping and evaluation of in-vehicle interfaces. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 581-589).
  71. Schwall, M., Daniel, T., Victor, T., Favaro, F., Hohnhold, H. (2020). Waymo public road safety performance data. arXiv preprint arXiv:2011.00038.
  72. Svärd, M., Markkula, G., Bärgman, J., Victor, T. (2021). Computational modeling of driver pre-crash brake response, with and without off-road glances: Parameterization using real-world crashes and near-crashes. Accident Analysis Prevention, 163, 106433.
  73. Trende A., Unni A., Rieger J., Fraenzle M. (2021) Modelling Turning Intention in Unsig- nalized Intersections with Bayesian Networks. In: Stephanidis C., Antona M., Ntoa S. (eds) HCI International 2021 - Posters. HCII 2021. Communications in Computer and Information Science, vol 1421. Springer, Cham.
  74. van Maanen, L., Heiden, R. V. D., Bootsma, S., Janssen, C. P. (2021). Identifiability and Specificity of the Two-Point Visual Control Model of Steering. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 43, No. 43).
  75. Wickens, C. D. (2015). Noticing events in the visual workplace: The SEEV and NSEEV models. In: R. R. Hoffman, et al. eds. Part VI - Perception and Domains of Work and Professional Practice. Cambridge: Cambridge University Press, pp. 749-768.
  76. Wiese, S., Lotz, A., Russwinkel, N. (2019). Seev-vm: Act-r visual module based on seev theory. In Proceedings of the 17th International Conference on Cognitive Modeling (pp. 301-307).